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Near infrared (NIR) spectroscopy was investigated to determine the protein content of Auricularia

auricula (commonly called black woody ear or tree ear) using partial least-squares (PLS), multiple

linear regression (MLR), and least-squares-support vector machine (LS-SVM). The performances of

different preprocessing were compared including Savitzky-Golay (SG) smoothing, standard normal

variate, multiplicative scatter correction (MSC), first derivative, second derivative, and direct

orthogonal signal correction. A successive projections algorithm (SPA) was applied for relevant

effective wavelengths selection. The combinations of various pretreatment and calibration methods

were compared based on the prediction performance. The optimal full-spectrum PLS model was

achieved by raw spectra, whereas the optimal SPA-MLR, SPA-PLS, and SPA-LS-SVM models were

achieved by MSC spectra. The best prediction performance was achieved by the SPA-LS-SVM

model, with correlation coefficients (r) = 0.9839 and a root mean squares error of prediction

(RMSEP) = 0.16. The results indicated that NIR spectroscopy combined with SPA-LS-SVM was the

most successful to determine the protein content of A. auricula.
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INTRODUCTION

Auricularia auricula (commonly called black woody ear or tree
ear) is a macrofungus. It is traditionally used as a food and drug
because of its rich nutrients, which include carbohydrates, pro-
teins, fats, fibers, vitamins, and minerals. In recent years, some
researchers have been focusing on its medicinal functions, such as
its antioxidant activity and anticoagulant activity, as a functional
food (1-4). The protein content is one of the most important
quality indices in A. auricula, which has many medicinal func-
tions. The protein in A. auricula is rich in amino acids, with an
especially high content of lysine and leucine.These parameters are
high nutritional factors in A. auricula. The determination of
protein is also quite helpful for further studies of the fast detection
of amino acids in A. auricula. Hence, the fast and accurate
determination of protein contents are important for food quality
and authenticity control, and it is quite helpful to keep a fair and
reasonable competitive market. The traditional method for
protein determination was the Kjeldahl method, the standard
method of the Association of Official Analytical Chemists
(AOAC). A recently developed method was the Dumas combus-
tion method performed by Rapid N Cube (Elementar Analysen-
systeme, Hanau, Germany). As compared with the Kjeldahl
method, the analytical time of the Dumas combustion method
was reduced to some extent, whereas the consumables were quite
costly. Many studies showed that there was little practical impact

on the reliability of N values between Kjeldahl and Dumas
methods or there was a simple equation to transfer these two
kinds ofN values (5 ). These two methods were laborious, costly,
and not convenient enough for fast and nondestructive determi-
nation of the protein content. In this study, we were going to
investigate the feasibility of determining the protein content of
A. auricula using near-infrared (NIR) spectroscopy combined
with linear and nonlinear calibrations. A NIR spectroscopic
technique has wide applications due to its characteristics of high
speed, low cost, and nondestructive analysis in the agriculture,
pharmaceuticals, food, textiles, cosmetics, and polymer produc-
tion industries (6-11). In the application aspect of A. auricula,
some researchers studied the constitutions of some edible tropical
species of mushrooms (12 ), the extraction of polysaccharide and
hypoglycemia activity (13 ), and the determination of nickel using
adsorbed resin phase spectrophotometry (14 ). Others studied the
chemical constituents of A. auricula using Fourier transform
infrared spectroscopy (15 ), the discrimination of three mush-
rooms (A. auricula, Boletus aereus, and Tremella fuciformis) by
Fourier transform infrared spectroscopy (16 ), and the discrimi-
nation of producing areas of A. auricula using both visible and
NIR spectra (17, 18). However, to our knowledge, there were few
reports about the determination of the protein content of
A. auricula using NIR spectroscopy (1100-2500 nm) based on
linear and nonlinear calibrations together with successive projec-
tion algorithms (SPA) for variable selection. The fast and
accurate detectionmethod of protein content using spectroscopic
techniques is helpful for further studies inA. auricula, such as the
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detection of nutritional parameters (polysaccharides, amino
acids, fat, and fiber) and the development of detection sensors
and portable instruments for quality detection.

The objective of this study was to investigate the potential
feasibility of using NIR spectroscopy combined with linear and
nonlinear calibrations to determine the protein content of
A. auricula. The performance of different preprocessing methods
was compared including Savitzky-Golay (SG) smoothing, stan-
dard normal variate (SNV), multiplicative scatter correction
(MSC), first derivative (1-Der), second derivative (2-Der), and
direct orthogonal signal correction (DOSC). SPAwas applied for
relevant variable selection to develop and compare the prediction
performance of multiple linear regression (MLR), partial least-
squares (PLS), and least-squares-support vector machine (LS-
SVM) models.

MATERIALS AND METHODS

Sample Preparation. Four major varieties (geographical origins) of
commercial A. auricula were collected as representatives of different
cultivated environments, including Qishan (Anhui, China), Heihe
(Heilongjiang, China), Huangshan (Anhui, China), and Qingyuan
(Zhejiang, China). These samples were cultivated in different environ-
ments and collected at different times. Therefore, these four varieties of
A.auriculaweremore representative for further calibrations. These samples
were first dried in an oven at 60 �C for 2 days and then ground in an electric
mill (Universal High-Speed Smashing Machines, model FW100, Tianjin
City Taisite Instrument Co., Ltd., Tianjin, China). The ground samples
were screened through a 60 mesh sieve. These preparations were imple-
mented to keep the samples in the same experimental condition and also to
reduce the influence of other physical properties. Then, the performance of
different calibration methods could be compared without external influ-
ences. Finally, 60 samples for each variety and a total of 240 samples were
obtained and randomly separated into calibration, validation, and predic-
tion sets. The calibration set was composed of 120 samples (30 for each
variety), the validation set was 60 samples (15 for each variety), and the
remaining 60 samples were used as the prediction set. The calibration and
validation sets were applied to develop a stable calibrationmodel, in which
the validation set was used to validate the calibration stage and avoid
overfitting problems instead of a full cross-validation procedure. The
prediction set was applied as an independent set to evaluate and assess
the prediction performance of the developed calibration models.

Reference Method for Protein Content. The reference method for
protein content detectionwas theDumas combustionmethod usingRapid
N Cube (Elementar Analysensysteme). The samples were weighed by a
four decimal balance, Sartorius BS224S (Sartorius AG, Goettingen,
Germany). After complete combustion, reduction, purification, and
detection, the nitrogen content of A. auricula was obtained through the
Rapid N Software V 3.4.0 (Elementar Analysensysteme). The protein
content of A. auricula was calculated as the value of total N � 6.25.

Spectral Acquisition. Themilled samples stored in a refrigerator were
taken out to reach room temperature at 20-23 �C. Three reflectance
spectra of each sample were obtained by the Foss NIRSystems 5000 (Foss
NIRSystems, Denmark). The scanning intervals were 2 nm within the
region of 1100-2500 nm. The spectral collection software was WinISI II
V1.5. Three replicate spectra of one sample were averaged into one
spectrum. A total of 240 averaged spectra corresponding to the 240
samples were collected.

Spectral Preprocessing. To achieve the optimal prediction perfor-
mance, different spectral preprocessing methods were applied for compar-
ison. First, the spectral data were transformed into ASCII format, and
then, the reflectance spectra were transformed into absorbance spectra by
log(1/R) (R = reflectance). The applied data preprocessing methods
included SG smoothing, SNV, MSC, 1-Der, 2-Der, and DOSC. The SG
smoothing could be applied for denosing (19 ). SNV and MSC were
applied for light scatter correction and reduction of the changes of light
path length (20, 21). The 1-Der and 2-Der were used to eliminate the
baseline shift (22 ). These pretreatments were implemented by “The
Unscrambler 9.8” (CAMO AS, Oslo, Norway). DOSC was applied to
correct the major variance sources such as temperature effects, time

influences, and instrumental differences in spectral data (23 ). The proce-
dure of DOSC was implemented by MATLAB 7.0 (The Math Works,
Natick, United States).

Variable Selection by SPA. SPAwas recentlydeveloped as a relevant
variable selection method. It is a forward variable selection algorithm,
which applies vector projection operations in a vector space to select the
most relevant variables with the least collinearity and redundancies for the
development of multivariate calibration (24, 25). In SPA, The matrix X
was composed of the instrumental response data (spectral data). The
dimensions of matrix X(N�K) are that the k-th variable xk corresponds to
the k-th column vector xk∈RN. LetM=min(N- 1,K ) be themaximum
number of selected variables for later calibration models. First, the
projections are carried on X, which generate k chains ofM variables each
time. Each element in a chain is selected in order to display the least
collinearity with previous ones. The construction of each chain starts from
one of variables xk, k = 1, ..., K and follows a comparison step of
projections until the needed relevant variable is selected. Then, the selected
variables are thought as effective wavelengths (EWs). Herein, SPA was
implemented to the spectra preprocessed by the aforementioned different
pretreatmentmethods. Thus, the EWs selected by each preprocessing were
used as the inputs of MLR, PLS, and LS-SVM models.

Modeling by MLR, PLS, and LS-SVM. MLR is a simple and
easily interpreted calibration method but is interrupted by the collinearity
between the variables (26 ). For the development of MLR models, the
number of input variables should be less than the sample number and
larger than the response chemical variable number. Herein, the input
variables were the selected EWs by SPAwith different preprocessing. EWs
selected by SPA removed the most collinearity and redundancies in the
preprocessed spectra. The response chemical variable was the protein
content. Because all of the selected EWs were applied in the SPA-MLR
model, the prediction performance could directly demonstrate the power
of SPA and the prediction capability of SPA-MLR model.

PLS is another widely applied multivariate calibration method in the
application of spectroscopic technique (27 ). The PLSmodel could develop
a linear relationship between the inputs (spectral data) and the response
chemical variable (protein content). During the calibration stage, PLS
employs latent variables (LVs) instead of real variables (spectral data). To
develop a parsimonious model, the selected EWs by SPA with different
preprocessing were also applied as input data of PLS to develop SPA-PLS
models. For comparison, full-spectrum PLS models were developed with
aforementioned different preprocessing methods. In MLR and PLS, the
samples in the validation set were used to validate the calibration model.
The samples in the prediction set were applied to assess the prediction
performance of developed MLR and PLS models.

Moreover, it is worth noting thatMLR and PLSmethods only deal the
linear problems to develop a linear relationship between the spectral
variables and the target chemical response (protein content ofA. auricula).
Considering latent nonlinear information existed in the spectral data, LS-
SVM was employed to compare the prediction performance with MLR
and PLS models.

LS-SVM has a good theoretical foundation in statistical learning
methods and handles both linear and nonlinear multivariate problems
in a relatively fast way (28-31). It employs a set of linear equations using
support vectors instead of quadratic programming problems to reduce the
complexity of optimization processes. The LS-SVM model can be ex-
pressed as follows:

yðxÞ ¼
XN
i¼1

RiKðx, xiÞ þ b ð1Þ

where Ri is a Lagrange multiplier, K(x,xi) is a kernel function, and b is the
bias value.

During the calibration stage of LS-SVM, input data are first settled
using the selected EWs by SPA. The commonly used kernel is the radial
basis function (RBF) kernel. The RBF kernel function can be expressed as
follows:

Kðx,xiÞ ¼ expð-jjx-xijj2=σ2Þ ð2Þ
where xi is input data (selected EWs). σ is the RBF kernel parameter,
and σ2 is the bandwidth parameter. Two important parameters in
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LS-SVM with RBF kernel are the regularization parameter γ and the
width parameter σ2. The regularization parameter γ determined the
trade-off between minimizing the training error and minimizing
the model complexity. The width parameter σ2 implicitly defined the
nonlinear mapping from input space to some high dimensional feature
space. In this paper, the optimal combination of (γ, σ2) was achieved by
a two-step grid search technique. In this procedure, leave-one-out
cross-validation was used to avoid overfitting problems. The ranges
of γ and σ2 within (10-3-105) were based on experience and previous
researches (10, 30). All of the calculations for modeling were performed
using MATLAB 7.0 (The Math Works). The free LS-SVM toolbox
(LS-SVM v 1.5, Suykens, Leuven, Belgium) was applied with
MATLAB to develop the calibration models. The prediction perfor-
mance was evaluated and assessed by the following indices (24, 25):
correlation coefficients (r), root mean squares error (RMSE) of
calibration set (RMSEC), validation set (RMSEV), and prediction
set (RMSEP), and residual predictive deviation (RPD). Generally, a
good model should have a higher r value and lower RMSEC, RMSEV,
and RMSEP values. An acceptable model should have a RPD value of
more than three. RMSE is calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðŷi -yiÞ2

n

vuuut ð3Þ

where n is the number of samples and yi and ŷi are the reference and
predicted values of the i-th sample, respectively.

One more thing should be mentioned about the software for spectral
preprocessing and calibration. The data were collected by WinISI soft-
ware, and the preprocessing and calibration were implemented by Un-
scrambler and MATLAB software. WinISI software could not perform
DOSC, SPA, MLR, and LS-SVM. These procedures were helpful for
valuable information exploring. Although exporting data into Unscram-
bler andMATLAB required a little additional time, the models developed
using SPA and LS-SVMwere more parsimonious and performed a better
prediction performance. Hence, Unscrambler and MATLAB software
were employed for spectral preprocessing and calibration.

RESULTS AND DISCUSSION

Spectral Features of A. auricula. The raw spectra ofA. auricula
are shown in Figure 1a. The preprocessed spectra by SG+SNV,
MSC, 1-Der, 2-Der, and DOSC are shown in Figure 1b-f,
respectively. The trends of raw spectra were quite similar, but
at the region of 1100-1350 nm, the absorbance values were
separated, especially in Figure 1b-d. The SG + SNV and MSC
spectra kept all spectral features in raw spectra such as the peaks
and valleys. The DOSC spectra were quite different from raw
spectra with two separated absorbance bands along with the
wavelength. The visual difference might be caused by the ortho-
gonal projection procedure in DOSC pretreatment.

The statistical values of protein content of A. auricula in
calibration, validation, and prediction sets are shown in Table 1.

Figure 1. Raw absorbance spectra (a) and preprocessed spectra by SG + SNV (b), MSC (c), 1-Der (d), 2-Der (e), and DOSC (f) of A. auricula.
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The ranges of protein content in calibration set are 8.83-11.55%,
which covered a larger range than validation and prediction sets.
This would be helpful for the development of a stable and general
calibrationmodel. It was a coincidence that the mean values were
identical with 10.65% in all three sets.

Full-Spectrum PLS Models. Full-spectrum PLS models were
developed using raw and preprocessed spectra with aforemen-
tioned preprocessing methods (SG+ SNV, MSC, 1-Der, 2-Der,
and DOSC). The validation set was applied to validate the
achievement of a stable calibration model. Different LVs were
used according to different preprocessing. The prediction perfor-
mance was assessed by prediction set. The main evaluation
standards were the r values and RMSEP of the prediction set.
The optimal prediction performance was achieved by raw spectra
with r=0.9632 and RMSEP= 0.23. Then, the following model
wasMSC spectra with r=0.9624 and RMSEP= 0.24 (Table 2).
The reference vs predicted values of protein content by full-
spectrum PLS (raw) model are shown in Figure 2. As indicated in
Figure 2, there were three obvious levels of sample scatters
corresponding to four varieties of A. auricula. The reason was
that the mean values of protein content in prediction set were
9.22, 10.72, 11.26, and 11.40% for Qishan, Heiheng, Huangshan,
and Qingyuan, respectively. The mean values of Huangshan
(11.26%) and Qingyuan (11.40%) were quite close, in that their
scatters weremixed together in the top level inFigure 2. Although
all developed full-spectrum PLS models obtained acceptable
results, the input variables were 700 wavelengths, which included

much collinearity and redundant information. Hence, a variable
selection method should be introduced to remove the collinearity
and redundancies of the spectral data. Herein, SPA was recom-
mended to implement such a procedure, as shown as an effective
method (24, 25, 32, 33).

EWs Selected by SPA.The SPAprocedurewas implemented to
the spectra, which were pretreated by different preprocessing
methods. It was worth noting that the validation set was applied
for the guidance of selection of candidate subsets of variables. The
prediction set was utilized in the final performance evaluation of
the resulting models. The maximum number of selected EWs was
set as 30. Table 3 shows the selected EWs by SPA according to
each preprocessing. The locations of EWs in the spectra are
shown in Figure 3. The number of selected EWs was less than 10,
which would be helpful to develop more parsimonious models.
The EWs selected by each preprocessing in Table 3 were listed
according to the significance, with the most important listed first.
Themost important wavelengthwas that selected first by SPA for
each preprocessing. TakeMSC spectra for instance, 1316 nmwas
thought to be the most relevant one. To show the locations of
selected EWs, the selected EWs by SPA with different preproces-
sing are shown in Figure 3.

The wavelength bands selected between 1254 and 1348 nm
(1304, 1314, 1316, and 1318 nm) could be attributed to the
combination of the first overtone of N-H stretch with funda-
mental N-H in plane bend and C-N stretch with N-H in-plane

Table 1. Statistical Values of Protein Content of A. auricula

data set sample no. range (%) mean (%) standard deviation

calibration 120 8.83-11.55 10.65 0.88

validation 60 9.12-11.44 10.65 0.87

prediction 60 8.97-11.50 10.65 0.88

all 240 8.83-11.55 10.65 0.87

Table 2. Prediction Results of Protein Content by Full-Spectrum PLS Models

calibration validation prediction

preprocessing LVs r RMSEC r RMSEV r RMSEP

raw 8 0.9792 0.18 0.9610 0.26 0.9632 0.23

SG + SNV 8 0.9787 0.18 0.9607 0.26 0.9606 0.24

MSC 6 0.9770 0.19 0.9606 0.25 0.9624 0.24

1-Der 8 0.9873 0.14 0.9560 0.27 0.9555 0.26

2-Der 6 0.9882 0.13 0.9485 0.28 0.9471 0.32

DOSC 1 0.9879 0.14 0.9902 0.12 0.9575 0.25

Figure 2. Reference vs predicted values of protein content by an optimal
full-spectrum PLS model using raw spectra. The prediction samples were
denoted by black circles, which distributed along the regression line.

Table 3. Selected EW by SPA with Different Preprocessing

preprocessing no. selected wavelengths (nm)

raw 7 1318, 1100, 1396, 2214, 1834, 1520, 2498

SG + SNV 9 1304, 2306, 2012, 1520, 2390, 2176, 1918, 2052, 2268

MSC 6 1316, 2498, 1894, 2074, 2186, 1908

1-Der 5 1718, 2216, 2118, 2226, 2108

2-Der 2 1690, 1314

DOSC 1 2320

Figure 3. Selected EWs by SPA with preprocessing of raw, SG + SNV,
and MSC (a) and 1-Der, 2-Der, and DOSC (b).
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bend. This region was thought to be associated with the amide
vibrations characteristic for protein (34 ). EWs around 1908 and
1918 nm could confirm highly hydrophilic properties of protein
since these wavelengths could be attributed to the combination of
the O-H stretch and the O-H deformation (35 ). The selected
EWs around 2012, 2052, 2108, and 2118 nm might be correlated
with N-H stretch and N-H in-plane motion (34 ). Wavelengths
around 2176, 2186, 2214, 2216, 2226, and 2268 nmmight also be
attributed to the combination of N-H, C-N, and CdO
stretch (36, 37). Wavelengths around 2390 and 2498 nm could
be associated with the stretching and bending vibrations of the
CH2 groups of the side chains of different amino acids (38 ). The
above analysis indicated the EWs selected by SPA had a close
relationship with the response of protein. Different preprocessing
could select similar EWs (Table 3), such as 1520 nm by both raw
and SG+ SNV spectra, 2498 nm by both raw andMSC spectra,
2214 (raw) and 2216 nm (1-Der), 1314, 1316, and 1318 nm by
2-Der, MSC, and raw spectra, respectively. These results indi-
cated the relevance of the selected similar EWs.

SPA-MLR, SPA-PLS, and SPA-LS-SVM Models. Using the
selected EWs by SPA, the protein content of A. auricula was
determined by SPA-MLR, SPA-PLS, and SPA-LS-SVMmodels.
Herein, SPA-MLR and SPA-PLS were linear calibrations,
whereas SPA-LS-SVM belonged to nonlinear calibration. The
EWs selected using different preprocessed spectra were compared
for prediction performance. Table 4 shows the overall results of
each model based on a different preprocessing combined SPA
selection and modeling method.

SPA-MLRmodels were developed directly using the EWs, and
the prediction performance could directly indicate the effective-
ness of the EWs. The prediction results are shown in Table 4.
As can be seen, the optimal prediction results were obtained by
MSC spectra with r = 0.9599 and RMSEP = 0.25. The
performance was not as good as a full-spectrum PLS (raw) model

with r = 0.9632 and RMSEP = 0.23. However, the prediction
performancewas not severely impaired after reducing the number
of wavelengths from 700 to 6 and was acceptable for applications
(r > 0.95).

SPA-PLS models were developed based on the selected EWs,
and different LVs were applied in the calibration models. The
optimal prediction performance was also achieved by MSC
spectra with r = 0.9635 and RMSEP = 0.24. Three LVs were
used in this SPA-PLS (MSC)model. The result was slightly better
than the full-spectrum PLS models except the RMSEP value in
the full-spectrum PLS (raw)model. TheRMSEP=0.24 by SPA-
PLS (MSC)model was slightly larger thanRMSEP=0.23 by the
full-spectrum PLS (raw) model. However, these two values
(RMSEP = 0.24 and RMSEP = 0.23) were quite close to each
other. Considering the variables used in these two models (SPA-
PLS with six wavelengths and full-spectrum PLS with 700
wavelengths), the SPA-PLS model was more simple and parsi-
monious to understand. The selected EWs inMSC spectra would
be helpful for further practical applications like commercial
portable instrument development for protein detection of
A. auricula. In this point of view, the SPA-PLS (MSC) model
was better than full-spectrum PLS models.

Considering that the latent nonlinear information existed in the
spectral data, LS-SVM was recommended to develop the SPA-
LS-SVM model to determine the protein content of A. auricula.
Using the selected EWs could reduce the computational time to
develop LS-SVM models because the training time using LS-
SVM increased with the square of the number of training samples
and linearly with the number of variables (dimension of
spectra) (39 ). The kernel function was the aforementioned RBF
kernel. The model parameters (γ, σ 2) were determined by a
two-step grid search technique as stated above. The optimal
combinations of (γ, σ 2) were determined according to preproces-
sing methods. The validation set was applied for validation of

Table 4. Prediction Results of Protein Content by SPA-MLR, SPA-PLS, SPA-LS-SVM, and Linear Function Models

calibration validation prediction

preprocessing EWs/LVs/(γ, σ2 ) r RMSEC r RMSEV r RMSEP RPD

SPA-MLR

raw 7/-/- 0.9699 0.21 0.9560 0.26 0.9590 0.25 3.5

SG + SNV 9/-/- 0.9771 0.19 0.9589 0.25 0.9429 0.29 3.0

MSC 6/-/- 0.9705 0.21 0.9599 0.25 0.9599 0.25 3.5

1-Der 5/-/- 0.9354 0.31 0.9392 0.30 0.9176 0.38 2.3

2-Der 2/-/- 0.9398 0.30 0.9206 0.34 0.9122 0.39 2.3

DOSC 1/-/- 0.9873 0.14 0.9905 0.12 0.9577 0.25 3.5

SPA-PLS

raw 7/6/- 0.9685 0.22 0.9506 0.29 0.9549 0.26 3.4

SG + SNV 9/7/- 0.9760 0.19 0.9613 0.24 0.9476 0.28 3.1

MSC 6/3/- 0.9645 0.23 0.9561 0.26 0.9635 0.24 3.7

1-Der 5/2/- 0.9315 0.32 0.9418 0.29 0.9148 0.38 2.3

2-Der 2/1/- 0.9398 0.30 0.9214 0.34 0.9124 0.39 2.3

DOSC 1/1/- 0.9783 0.14 0.9905 0.12 0.9577 0.25 3.5

SPA-LS-SVM

raw 7/-/(546.4, 27.8) 0.9864 0.14 0.9844 0.15 0.9737 0.20 4.4

SG + SNV 9/-/(31.4, 5.0) 0.9975 0.06 0.9980 0.05 0.9757 0.19 4.6

MSC 6/-/(32.8, 4.9) 0.9945 0.09 0.9970 0.07 0.9839 0.16 5.5

1-Der 5/-/(51.4, 14.0) 0.9803 0.17 0.9818 0.16 0.9586 0.25 3.5

2-Der 2/-/(9.5, 1.1) 0.9829 0.16 0.9910 0.12 0.9752 0.16 5.5

DOSC 1/-/(1.7 � 103, 0.2) 0.9920 0.11 0.9970 0.07 0.9607 0.24 3.7

linear function

DOSC 1/-/- 0.9869 0.14 0.9905 0.12 0.9576 0.25 3.5
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calibration model, and prediction set was used to assess and
evaluate the prediction performance of the developedmodel. The
prediction results by SPA-LS-SVMmodels are shown in Table 4.
As can be seen, the optimal prediction performance was achieved
by LS-SVM (MSC) model with r=0.9839 and RMSEP= 0.16,
which was the best model as compared with the full-spectrum
PLS, SPA-MLR, SPA-PLS, and SPA-LS-SVM models. The
prediction performance of all developed SPA-LS-SVM models
was better than that of linear PLS and MLR models except
SPA-LS-SVM(1-Der andDOSC)models. The reason for a better
performance was that LS-SVM took both linear and latent
nonlinear relevant information of the selected EWs, and
this nonlinear information improved the prediction performance.
The similar results were also in agreement with previous
studies (10, 30).

The reference vs predicted values of protein content are shown
in Figure 4a-c for SPA-MLR, SPA-PLS, and SPA-LS-SVM
models usingMSC spectra, respectively. The sample scatters were
much closer to the regression line in Figure 4c than that in
Figures 2 andFigure 4a,b. This also indicated the better prediction
performance of SPA-LS-SVM (MSC) model (Table 4). Compar-
ing all developed SPA-MLR, SPA-PLS, and SPA-LS-SVM
models, it was worth noting that the selected EWs in 2-Der

spectra made a bad performance in linear SPA-MLR and SPA-
PLS models, whereas they showed a good performance in the
nonlinear SPA-LS-SVM model. Moreover, the optimal prepro-
cessing was MSC for all SPA-based models. This might indicate
that the different calibration methods would need similar pre-
processing for better prediction performance when using a small
number of input variables especially in such specific cases.
Furthermore, the prediction performance was identical in SPA-
MLR and SPA-PLS using DOSC wavelength (2320 m). The
reason might be that only one wavelength 2320 nm was selected
as EW, andMLR and PLS were both linear calibration methods.
The prediction performance of SPA-LS-SVM (DOSC) was dif-
ferent and slightly better than SPA-MLR and SPA-PLS (DOSC)
models. It could also be found that the DOSC-based SPA-MLR
and SPA-PLSmodels achieved a good performance in calibration
and validation sets, whereas acceptable prediction results (r >
0.95) in theprediction set.After comparison, it could be concluded
thatNIR spectroscopy combinedwith SPA-LS-SVMcould be the
most successful to determine the protein content of A. auricula.

Considering only one wavelength (2320 nm) was selected as
EWs by SPA in DOSC spectra, a direct linear function and other
kinds of functions like polynomial function were developed to
determine the protein content. The developed functions are
shown in Table 5. Herein, only the direct linear function was
performed for prediction performance. These functions were
developed using the samples in calibration and validation sets.
The prediction performance was assessed by prediction set. The
prediction results are shown inTable 4. The reference vs predicted
values of protein content are shown in Figure 5. As can be seen,
the prediction results were acceptable with r = 0.9576 and
RMSEP = 0.25. The results indicated that the direct linear
function could be applied for the determination of protein
content of A. auricula. The samples distributed not as close
as Figure 4c by SPA-LS-SVM (MSC) to the regression line.
However, this linear function supplied a simple and effective way
for further applications in the field of quality detection of
A. auricula.

Figure 4. Reference vs predicted values of protein content by optimal
SPA-MLR (a), SPA-PLS (b), and SPA-LS-SVM (c) models using MSC
spectra.

Table 5. Direct Linear Function and Other Functions for Protein Content
Determination

function type function y(x) a r

direct linear function y(x) = 129.4x + 0.247 0.9879

polynomial function y(x) = -747.2x2 + 245.1x - 4.196 0.9884

logarithm function y(x) = 9.984 ln(x) + 35.85 0.9884

exponent function y(x) = 3.835 exp(12.66x) 0.9879

power function y(x) = 125.2x0.977 0.9884

a For y(x), y is the protein content of A. auricula, and x is the value of DOSC
spectra (wavelength at 2320 nm) of a certain sample.

Figure 5. Reference vs predicted values of protein content by direct linear
function using DOSC wavelength.
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Discussion about the Used Chemometric Methods. The best
model for protein content detection is SPA-LS-SVMmodel. This
work is a systematic comparison and analysis of preprocessing
methods, variable selection method, and calibration methods.
A discussion about the advantages and disadvantages of chemo-
metric methods is addressed as follows:

1. Systematic comparison of preprocessing methods of
SG, SNV, 1-Der, 2-Der, MSC, and DOSC: The first
five preprocessing (SG, SNV, 1-Der, 2-Der, and
MSC) are commonly used methods, which only take
theX-variables (spectral data) into consideration and
implement the process depending on spectral data
and not considering the influence of the Y-variable
(chemical constituents). It indicated that the perfor-
mance of these methods was quite influenced by the
spectral data, which might cause three potential
problems. First, the preprocessing methods would
bring in new noise and irrelevant information to
spectral data, like a derivative process (1-Der and
2-Der). Second, some useful and relevant informa-
tion for the prediction of chemical constituents was
removed or reduced by these preprocessing methods.
Third, the combination influences the first and sec-
ond points. However, the newly developed prepro-
cessing method, DOSC, could take both the spectral
data and the chemical constituents into considera-
tion. The preprocessed spectra by DOSC could cor-
rect the major variance sources such as temperature
effects, time influences, and instrumental differences.
The preprocessed spectra are more relevant and
related to the chemical constituents.

2. Application of variable selection method of SPA:
Many studies developedmodels using full wavelength
bands. There are many uninformative and irrelevant
variables in the full wavelength region. This makes
the model more complex and higher time cost. SPA
could select relevant variables with the least collinear-
ity and redundancies. It is a powerful way for variable
selection and helpful to reduce the computational
time and model complexity. Moreover, the selected
relevant variables would be helpful for the develop-
ment of detection sensors and portable instrument.

3. Comparison of linear (MLR and PLS) and nonlinear
(LS-SVM) calibration methods: The spectral data
contain both linear and nonlinear useful information
for protein content determination. MLR could make
full use of the input variables and directly demon-
strate the effectiveness of the input data. One con-
straint of MLR is that the sample number must be
larger than the variable number, and the variable
number must be equal or more than the Y-variable
number. PLS analysis using the LVs instead of origi-
nal input spectral data could be used to develop the
model. LVs could reduce the computational time, but
the PLS model could not directly demonstrate which
variable was important and how the performance
of the input variables is. Furthermore, both MLR
and PLS methods only deal with the linear relation-
ship between the spectral data and the chemical
constituents. The latent nonlinear information in
spectral data could not be applied to improve the
predictive performance. However, LS-SVM could
take advantage of both linear and nonlinear informa-
tion in the spectral data. That is why the optimal
model for protein content determination is the

SPA-LS-SVMmodel. SPA selected the most relevant
and informative variables, and LS-SVM made full
use of both linear and nonlinear relations between the
selected variables and the protein content to achieve a
good prediction performance.

4. The DOSC preprocessed spectral followed by
SPA process could select the most useful wavelength
to predict the protein content in A. auricula. In
most DOSC-SPA cases tried in this paper, only
one wavelength was selected, and an acceptable
prediction performance was achieved. These were
new trials and discoveries to bring a bright future to
develop detection sensors and portable instrument
for quality control in A. auricula, foods, and other
related fields.

In conclusion, the protein content of A. auricula was suc-
cessfully determined using NIR spectroscopy combined with
the SPA-LS-SVMmodel. The most suitable preprocessing was
MSC in SPA-based models. Moreover, SPA was a powerful
way for the most relevant variable selection, and the developed
SPA-MLR, SPA-PLS, and SPA-LS-SVM models were more
simple and parsimonious for further applications such as
portable instrument development. The best prediction perfor-
mance was achieved by the SPA-LS-SVM (MSC) model with
r = 0.9839 and RMSEP = 0.16. Further studies would be
focused on the variable selection and parsimonious function
development with higher prediction precision and less number
of effective variables.

ABBREVIATIONS USED

NIR, near-infrared; MLR, multiple linear regression; PLS,
partial least-squares; LS-SVM, least-squares-support vector ma-
chine; SG, Savitzky-Golay; SNV, standard normal variate;
MSC, multiplicative scatter correction; 1-Der, first derivative;
2-Der, second derivative; DOSC, direct orthogonal signal correc-
tion; SPA, successive projections algorithm; r, correlation coeffi-
cients; RMSE, root mean squares error; RMSEC, root mean
squares error of calibration; RMSEV, rootmean squares error of
validation;RMSEP, rootmean squares error of prediction; RPD,
residual predictive deviation; AOAC, Association of Official
Analytical Chemists; R, reflectance; EW, effective wavelength;
LV, latent variable; RBF, radial basis function.
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